

A CCE and TCT Study on low resistivity MCz p-on-n detectors

Nicola Pacifico, Michael Moll, Manuel Fahrer

16th RD50 workshop, Barcellona, 31 May-2 June 2010

Studied structures

- Common RD50 4" production at CNM
- -MCz p-on-n, 500 Ω ·cm (design resistivity)
- 300 μm thickness, 80 μm strip pitch
- Actual resistivity: ~200 Ω ·cm
- AC coupled strips
- P-spray insulation

-Previous studies on detectors from the same production batch (different materials)

- G. Pellegrini 10th RD50 workshop
- U. Soldevila 14th RD50 workshop

Irradiation:

1 MeV neutrons – Ljubljana, March 2007, (1e14, 3e14, 1e15, 3e15, 8e15 n/cm²) 24 GeV/c protons – CERN, 2009 (1.6e14, 4.8e14, 1.6e15, 4.8e15, 1.3e16 p/cm²)

CCE setup

- Alibava based setup
- 3.6 MBq ⁹⁰Sr source
- 20±0.5 temperature (provided with closed circuit silicon-oil cooling)
- Single scintillator triggering (collimation provided by small cross section of the scintillator)
- Plastic moderator, stopping slow electrons (not MIPS)
- Alibava DAQ 0.1.5 custom modified for bias voltage scans (E. del Castillo, 15th RD50 workshop)
- Custom version of the analysis root macros

CCE measurements (revised)

(results already shown at the 15th RD50 workshop, some other detectors measured with the same setup shown for comparison)

Problem previously attributed to Alibava (baseline shift in the signal at the point of "eating up" the signal) was finally correctly associated to the averaging on microdischarges!

Good charge collection efficiency for low resistivity MCz p-on-n
Signal still visible and measurable after 2015

measurable after 3e15 n/cm²

•It was not possible to measure other neutron fluences (1e14, 3e14, 8e15) and all the proton fluences due to the onset of huge microdischarges

TCT setup

- Cooling to -20±0.5 C
- Red (665 nm) and Infrared (1060 nm) laser illumation
- FWHM pulse width 80 ps
- Miteq 1.5 GHz 44 dB low noise amplifier
- Agilent 2.5 GHz oscilloscope
- Detector bonded on thermally conductive PCB
- Front biasing, decoupling with 12 GHz BW Bias-Tee
- Laser delivery system with 4 focusers (front/back, red/IR)
- Humidity controlled: dry air atmosphere with dew point < -50C

Red TCT pulses – Neutrons (1/2)

Major MDs issues @ > 850 V!

Maximum applicable voltage: 850 V The peak is shifting in time with higher voltages – <u>not</u> due to plasma effects (tested at lower laser powers)

Double peak – Only fully depleted detector (see In this case there is no peak shift with bias voltage, as well as no microdischarges. Is there any correlation?

Extimated teff,e=3.3 ns

Red TCT pulses – Neutrons (2/2)

No microdischarge, double peak, still no peak shift

Red TCT pulses – Protons

All measurements heavily affected by MD. Most probable explanation arising to comparison with neutrons: Very high Vdep-> Very high fields -> MD

Laser CCE (neutrons)

•CCE through TCT (both red and infrared) was performed on neutron irradiated samples (not possible on proton irradiated due to microdischarges)
•Calibration check of the laser was obtained by re-measuring the first diode of the set

and verifying repeatedly that the height of the pulse was kept

Laser CCE (protons)

•CCE through TCT (both red and infrared) was performed on neutron irradiated samples (not possible on proton irradiated due to microdischarges)
•Calibration of the laser was obtained by re-measuring the first diode of the set and verifying repeatedly that the height of the pulse was kept

Microdischarges

(Microdischarges in 1.7e14 p irradiated sample at 700 V)

Microdischarges were present to some extent in all the measured detectors (both strips and diodes), making some measurements impossible (i.e. most strip CCE's). The phenomenon was somehow correlated to high depletion voltages of the structures, getting less important at Vdep minima.

Conclusions

- CCE and TCT measurements were performed on MCz-n low resistivity samples
- Charge collection efficiency properties were measured at 1e15 and 3e15 n/cm², showing good results (better than standard high resistivity FZ-n and MCz-n, almost comparable to p-type technologies @ 1e15.
- Measurements were affected in most cases by severe MDs inside the detectors, already observed on the same production batch in other materials (refer to U. Soldevila presentation – 14th RD50 workshop) - processing issues?
- Apparently irradiation with neutrons at fluences of 1e15 and 3e15 improved the situation -> Are the MDs correlated to the radiation-induced increase in resistivity?