Design: Command Decoder for LumiMulti ADC

Introduction:

The aim of this work is to implement a slow interface for LumiMulti ADC chip using a serial SPI like interface. The LumiMulti ADC is a slave, that works in SPI mode '0'(active posedge). The serial command protocol defined for the LumiMulti ADC is shown in the figure below.

1	0	1	0	1	1	C1	C0	D7	D6	D5	D4	D3	D2	D1	D0
---	---	---	---	---	---	----	----	----	----	----	----	----	----	----	----

Figure 1. Serial command/data format.

The hierarchy of the serial command protocol is as follows:

- (1) Header: 101011
- (2) Command set: C1-C0
- (3) Data set: D7-D0

The MSB is transmitted first. Field header is 6 bit long and one should always transmit 101011. Command set is 2 bit long and hence there are four possible commands: **config**, **active-adc**, **dac0** and **dac1** with codes given in table 1. Data set are always 9-bit long and for commands with shorter data the trailing bits are set to zero.

Specification:

The data interpretation for the different commands are summarized in table1. Also some description of the command set is described in this section.

Name	Code	Data interpretation
config	'00'	Mode(2b), Test-ADC(3b), Low Power(2b)
active-adc	'01'	Select-ADC (8b)
dac0	'10'	Dac0 value (9b)
dac1	'11'	Dac1 value (9b)

Table 1. Command set.

The **config** command is used to operate in LumiMulti ADC in three different modes: Parallel, Serial and Test. Modes of operation are chosen by setting appropriate value in the field mode of config command (refer table 2).

Mode	Field
Parallel	'00'
Test	'01'
Serial	'10'

Table 2. config command set.

Parallel Mode: This is the base mode of operation, after every hard reset mode is set to parallel. In this mode each ADC is connected to on LVDS output and sends data serially. Internal ADC clock is 10 times slower than the input clock signal. During transmission MSB are sent out first.

Serial Mode: In this mode all ADC sends data through one serial LVDS output. Internal ADC clock is 80 times slower than input clock signal. The transmission pattern is, MSB of ADC7, ADC6....ADC0. They are all bit number 9 of those ADC's samples. Next in sequence are bit 8 and so on from all ADCs.

Test Mode: In test mode only one ADC reads out data. Consecutive samples are presented on LVDS output 9 to 0 after each clock cycle so the internal ADC clock is exactly the same as input clock signal.

Low Power: Selects power mode of LVDS ports and internal buffer controls. The low power field has only two bits: first bit controls the LVDS power mode and the second bit controls both internal buffers.

Active-adc: The active-adc command permits one choose which ADC is to be turned ON and which to be turned OFF. When an ADC is OFF, the power in analog part is OFF and the clock in the correction logic is stopped. Active-ADC command has 8 bits of data. First bit if set to 1/0 turns ADC7 ON/OFF, similarly second bit controls ADC6, and so on till ADC0.

Both **dac0/dac1** commands set the DACs in the analog part. DAC number 0 controls the biasing current in the main part of ADC while DAC1 is responsible for current in the sample and hold circuit.

Implementation:

Command decoder module was implemented in Verilog HDL. Only the top level design, with submodules and primary inputs-outputs are shown here for clarity.

Tools used: Cadence NC-Verilog.

Figure 2. Top-level Module.

Simulation and Synthesis:

The design provided with necessary input test vectors has been simulated successfully, the simulation test results for one such scheme is presented below.

Tools used: Cadence NC-Sim, RTL compiler and SOC Encounter.

Figure 2. Simulation waveforms.

Command decoder module has been synthesized and gate level netlist generated in AMS 0.35u technology. Synthesis reports summary has been added here.

Generated by: Encounter(R) RTL Compiler v07.20-s009_1						
Generated on: Sep 13 2010 09:20:00 AM						
Module: top_cmddecoder						
Technology libraries: c35_CORELIB 2.1						
physical_cells						
Operating conditions: _nominal_						
Interconnect mode: ple2						
Area mode: physical library						
Gate Instances Area Library						
ADD21 1 145.600 c35 CORELIB						
AOI210 8 582.400 c35 CORELIB						
AOI2110 4 364.000 c35 CORELIB						
AOI220 6 546.000 c35 CORELIB						
AOI310 3 273.000 c35_CORELIB						
CLKIN2 11 400.400 c35_CORELIB						
CLKIN3 1 36.400 c35_CORELIB						
DFC3 7 2165.800 c35_CORELIB						
DFEC1 39 13486.200 c35_CORELIB						
DFSC1 1 382.200 c35_CORELIB						
DLQ3 1 182.000 c35_CORELIB						
IMUX20 4 364.000 c35_CORELIB						
INV1 2 72.800 c35_CORELIB						
INV2 1 36.400 c35_CORELIB						
INV3 12 436.800 c35_CORELIB						
NAND20 24 1310.400 c35_CORELIB						
NAND30 5 364.000 c35_CORELIB						
NOR20 25 1365.000 c35_CORELIB						
NOR30 4 291.200 c35_CORELIB						
NOR31 2 145.600 c35_CORELIB						
NOR40 3 218.400 c35_CORELIB						

OAI210 11 800.800 c35_CORELIB OAI2110 3 273.000 c35_CORELIB OAI220 2 182.000 c35_CORELIB OAI310 5 455.000 c35_CORELIB					
total 185 24879.400					
Type Instances Area Area %					
sequential 48 16216.200 65.2					
inverter 27 982.800 4.0					
logic 110 7680.400 30.9					
total 185 24879.400 100.0					
Concepted by Executor(D) DTL Compiler (07.20.5000.1					
Generated by: Encounter(R) R1L Compiler V07.20-S009_1					
Generateu on: Sep 15 2010 09:20:00 AM Modulo: top amddogodor					
Technology libraries: c35 COPELIB 2.1					
nhysical colle					
Operating conditions: nominal					
Interconnect mode: ple2					
Area mode: physical library					
Eachage Dynamic Total Instance Cells Power(nW) Power(nW)					
top_cmddecoder 185 22.908 518256.637 518279.545					
CmdDec 126 7.396 319387.691 319395.086					
ACTIVEreg 17 5.840 58753.496 58759.336					
MODEreg 15 5.114 64519.164 64524.279					
DACreg 27 4.558 34138.056 34142.614					

Verification with Self-checking test-benches:

Here we perform a predictive analysis to ensure that the design when manufactured will perform the given I/O functions with certain accuracy. Detailed self-checking test-benches are written to perform the verification, along with code coverage tools. The commonly used code coverage analysis offers Code/Data coverage, FSM coverage and Functional coverage. If any coverage is found to be low, analysis of the unused code helps to determine additional tests needed.

Tools used: Cadence ICCR.

A simple top level FSM coverage result is shown below:

Figure 3. FSM coverage chart.

The simple state machine shown above has 100% coverage, as all the states has been visited during the exercise, and there are no unused states. Results of the code coverage analysis has been summarized below for the entire design in table 2.

Туре	Coverage	Passing Ratio
Module/Unit	97.00%	398/410
Instance	97.00%	398/410
State	100.00%	49/49
Arc	97.00%	58/60

Table 2: Result-Code coverage analysis.