Development of a PET module using Silicon Photomultipliers as Photon Detectors

Ruben Verheyden

06 April 2010

Outline

Introduction & Motivation

- Positron Emission Tomography
- Future of PET

2 Module Components

- Gamma Conversion
- Photon Detection
- Readout Electronics

3 First Results

- Surface Sensitivity
- Linearity of SiPM
- Energy Resolution
- Timing Resolution

Positron Emission Tomography Future of PET

Positron Emission Tomography?

- Nuclear Imaging technique often used for medical imaging.
 - β^+ emitter added to tracer molecule
 - Can be used to study functional processes in the body
- Indirectly measures the 3D distribution of emitted positron radiation.
 - Back-to-Back $\gamma {\rm 's}~{\rm from}~{\rm e}^+{\rm e}^-$ annihilation are measured

Positron Emission Tomography Future of PET

Basics of PET

- I Positron (β^+ decay) slows down in tissue
- 2 e⁺e⁻ annihilation \rightarrow 511 keV γ pair

To measure distribution of annihilation events requires:

- Coincidence measurement γ pair → line of response (LOR)
- Segmented detector ring for 360° or 2 rotating modules

Accept events within coincidence time window & Reject events outside coincidence time window

Ruben Verheyden

events

SiPM PET Module

Positron Emission Tomography Future of PET

Photon Interaction with Matter

- Photon can interact with material in 3 ways:
 - ${\ensuremath{\bullet}}$ Photo-electric effect \rightarrow entire photon energy is absorbed \rightarrow full energy measured
 - ${\ensuremath{\, \bullet \, }}$ Compton scattering \rightarrow photon scatters on e^ & some energy is transfered to e^
 - Pair production $\rightarrow \gamma$ interacts with a nucleus & e⁺e⁻ pair is produced (requires $E_{\gamma} \ge 2 \times 511 \text{keV}$) \rightarrow no issue for PET

Compton Scattering: \downarrow electron-photon energy sharing!

$$\begin{split} E_{\gamma}' &= E_{\gamma} \, \frac{1}{1 + \epsilon (1 - \cos \theta_{\gamma})} \quad \& \quad \epsilon = \frac{E_{\gamma}}{m_e c^2} \\ E_{\gamma}'^{min} &= \frac{E_{\gamma}}{3} \text{ for } \epsilon \to 1 \& \theta \to 180^{\circ} \\ \downarrow \\ E_{e^-}^{max} &= E_{\gamma} - E_{\gamma}'^{min} = \frac{2}{3} E_{\gamma} \qquad E^{max} \approx 340 \; keV \end{split}$$

Positron Emission Tomography Future of PET

◆ 同 ▶ ◆ 三

э

Photon Interaction with Matter

- Cross section of γ interaction is Z-dependent:
 - $\bullet~$ Photo-electric effect (PE) $\propto E^{-3.5}~Z^5 \rightarrow$ dominant at low energies BUT strongly dependent on Z
 - Compton scattering (CS) \propto Z ln $E/E \rightarrow$ dominant at medium energies & only linearly dependent on Z

Positron Emission Tomography

Fundamental limits of PET

- Range effect $\rightarrow e^+e^-$ annihilation not at location of β^+ decay (few mm)
- Incorrect Line of Response (LOR) effects:
 - Compton scattering of γ's in tissue and material in the path of the $\gamma \rightarrow$ angular deviation on LOR
 - Random events coupled incorrectly to each other
 - Parallax error when LOR is at edge of transaxial view PET scanner

• β^+ emitter has to be chosen based on:

- half-life t_{1/2} → minimise absorbed dose vs good measurement statistics
- Energy spectrum of β^+ decay \rightarrow range

Isotope	t _{1/2}	Eav	Rav
	(min)	(MeV)	(mm)
¹¹ C	20.4	0.385	1.7
¹³ N	10	0.491	2.0
¹⁵ 0	2	0.735	2.7
¹⁸ F	109.8	0.242	1.4

Parallax Error

Ruben Verhevden

SiPM PET Module

Positron Emission Tomography Future of PET

PET and MRI

• Why combine MRI scan with a PET scan?

- $\ \ \, {\sf MRI} \rightarrow {\sf tissue identification}$
- PET → physiological and biochemical tissue activities
- Combine MRI & PET scanners for ease of alignment and increased accuracy

• Requires magnetic field (MRI!) insensitive photon detectors

- classical PMT's (magnetic field, expensive, fragile, power)
- Silicon Photomultipliers (magn. field insensitive, can be cheap, robust, low power)

left MRI image middle Combined MRI & PET image right PET image

Positron Emission Tomography Future of PET

Time of Flight PET

Use time difference between detection of back-to-back γ's

- Infinitely sharp timing $\rightarrow x = \frac{\Delta t \cdot c}{2}$
- Detector timing resolution $\sigma_t \to x + \sigma_x = \frac{\Delta t \cdot c}{2} + \frac{\sigma_t \cdot c}{2}$
- Better $\sigma_t \rightarrow$ more accurate position
 - Speed of light 33 $ps/cm \rightarrow sub-cm resolution \rightarrow improve spatial resolution$
- If σ_x < size of emission source:
 - ${\ensuremath{\bullet}}$ distance between annihilation events $>\sigma_{\rm x} \rightarrow {\rm decouple}$ events
 - distance between annihilation events $< \sigma_x \rightarrow \frac{\text{decouple}}{\text{events}}$
 - improvement of S/N

Image: A image: A

Gamma Conversion Photon Detection Readout Electronics

PET Module Requirements

PET module should consist of:

- Scintillator → convert γ into light
- Photon detector to detect the scintillation light

• Ideal characteristics of PET module:

- High stopping power (total absorption of 511 keV γ)
- High spatial resolution \rightarrow detector segmentation
- Good Energy resolution → rejection of scattered events
- Inexpensive

• Additional requirements for components:

- Magnetic field insensitive detectors \rightarrow PET & MRI
- Very fast detectors (sub-ns range) → ToF to improve S/N
- Silicon Photomultiplier → promising candidate as photon detector for ToF PET & MRI combination (B-field insensitive, fast, relatively cheap → segmentation, ...)

Gamma Conversion Photon Detection Readout Electronics

Scintillators

- Convert γ to visible light:
 - Visible light is easiest to detect (shallow penetration depth)
 - Scintillation crystal has to be clear material

• Production of scintillation light:

- γ interacts with e[−] in crystal valence band → creates photo-e[−]
- Photo-e collides with e in valence band \rightarrow multiple e get excited
- each e in conduction band decays → emits a photon

• A good candidate for ToF PET should have:

- High light yield \rightarrow energy resolution & ToF
- ${\ensuremath{\bullet}}$ High density \rightarrow high stopping power \rightarrow small crystals for fine segmentation
- Preferably non hygroscopic → easy to handle

Image: A mathematical states and a mathem

Gamma Conversion Photon Detection Readout Electronics

Scintillator Materials

Physical properties of some scintillator materials often used for PET

Scintillator	Density	Absorption length	Light Yield	Decay time	Wavelength
Material	(g/cm ³)	(<i>cm</i>)	(% Nal)	(<i>ns</i>)	(<i>nm</i>)
BGO	7.13	1.04	20	300	480
LYSO	7.1	1.2	75	40	420
Nal:Tl	3.67	2.91	100	230	410
GSO	6.7	1.41	20	60	440
LuAP	8.3	1.05	30	18	365
PbWO ₄	8.28	0.85	1	15	440

E 990

э

< 🗇 > <

Gamma Conversion Photon Detection Readout Electronics

Solid-state Photon Detectors

• p-doped Si + n-doped Si \rightarrow depletion region (\uparrow with \lor bias \uparrow !)

- Internal Photo-effect converts visible light into an e-h pair ($\sim 1.1 \ eV$ needed)
- Si-Photodiode:
 - ${ullet}$ Visible light is absorbed within $\sim 1 \; \mu m \rightarrow$ very thin p layer
 - High QE (80% $\lambda \approx$ 700 nm)
 - No gain: single photon detection
- Avalanche Photodiode:
 - High reverse bias voltage, typically 100-200 V
 - High gain, typically 100-1000
- Very high gain ($\sim 10^5 \cdot 10^6$) with Avalanche Photodiode operation in Geiger-mode!

Gamma Conversion Photon Detection Readout Electronics

Silicon Photomultiplier

- Array of Avalanche Photo-Diodes (APD) operating in Geiger Mode
- Geiger discharge \rightarrow dead time of APD \rightarrow 1 photon / APD!
- Array of APD's → dynamic range of SiPM, position sensitivity!

Advantages:

- Low operation voltage ~ 10-100 V
- Gain $\sim 10^6$
- peak Photon Detection Efficiency (PDE) up to 40% (400 nm) PDE = $QE \times \epsilon_{Geiger} \times \epsilon_{geo}$ ($\epsilon_{geo} \sim$ dead space between cells)
- Time resolution ~ 100-200 ps
- Works in magnetic field
- Disadvantages:
 - Dark Counts ~ several 100 kHz/mm²
 - Radiation damage (p, n), but not an issue for PET

Gamma Conversion Photon Detection Readout Electronics

Readout Electronics for Waveform Sampling

• Digital sampling of electronic signal:

- Switched Capacitor Array (SCA) stores total signal
- Charge on each capacitor is measured \rightarrow sampled waveform
- Rebuild waveform for testing (slow readout)
- Analyse waveform on FPGA (fast readout)

• Very POWERFULL tool because:

- Incorporate waveform analysis algorithms on FPGA for deconvolution of piled-up signals (classic electronics)
- QDC and TDC all in 1 device!
- High density of channels, cheap (VLSI), fast (up to 20 GSa/s), FPGA \rightarrow flexible, low power

V.S.

Ruben Verheyden

SiPM PET Module

Surface Sensitivity Linearity of SiPM Energy Resolution Timing Resolution

Silicon Photomultiplier: Surface Sensitivity

Setup for position scan

- Single photon light intensities → light filters
- Beam expander → parallel light → strong lens for sharp focus
- Focus needs to be < pixel pitch</p>

< (□)

• Position scan \rightarrow internal structure of SiPM:

- Internal SiPM structure determines ϵ_{geo} which mainly determines PDE of SiPM
- Higher $\epsilon_{geo} \rightarrow$ better energy resolution \rightarrow improved S/N
- Full surface scans → overall uniformity of sipm

Surface Sensitivity Linearity of SiPM Energy Resolution Timing Resolution

Linearity of SiPM

• Finite number of SiPM pixels

- Limited dynamic range
- Linear behaviour \propto number of pixels
- Pixel has dead time when it discharges \rightarrow non-linear behaviour when N_{phot} approaches N_{pix}

Hamamatsu S10931-100P(X):

- 900 pixels with 100µm pitch
- radioactive samples with different decay energies used: ²²Na (511 keV & 1230 keV γ), ⁶⁰Co (1173 keV γ), ¹³⁷Cs (662 keV γ)

Image: A mathematical states and a mathem

Surface Sensitivity Linearity of SiPM Energy Resolution Timing Resolution

SiPM & LYSO Combination

• Energy resolution:

- LYSO coupled to SiPM
- Module energy resolution depends on FWHM_{LYSO} and FWHM_{SiPM}
- LYSO crystals from 2 companies tested (Sinocera & Saint-Gobain)

Manufacturer	Sinocera	Saint-Gobain
LYSO Intrinsic FWHM	20%	8%
Light Yield (Nal)	75%	75%
Peak Emission Wavelength	428 nm	420 nm

STMicroelectronics + Sinocera LYSO 19% FWHM

э

NO correction for non-linear behaviour!

Ruben Verheyden SiPM PET Module

Introduction & Motivation Module Components First Results Surface Sensitivity Linearity of SiPM Energy Resolution Timing Resolution

Single Photon & Back-to-Back Gamma

• SiPM intrinsic timing limits the coincidence timing of back-to-back γ 's?

- Measure intrinic timing with single photon level
- Different companies
- Wavelength dependence of intrinsic timing?
- Single Photon timing resolution:
 - Very short pulses \rightarrow < 40 ps laser pulse width
 - Red & Blue light

1mm ² SiPM	S137	H100C
$\sigma_{red}(ps)$	182	145
$\sigma_{blue}(ps)$	151	136

• Timing resolution of back-to-back γ's?

- Scintillator light used \rightarrow threshold level at several photon
- Threshold influences back-to-back timing resolution!
- Preliminary result (Hamamatsu) $\rightarrow \sigma_t = 442 \ ps$

< 67 ▶

Summary

Positron Emission Tomography:

- Measure 3D distribution of e^+e^- annihilation to determine β^+ tracer distribution (medical imaging)
- Combine PET & MRI → B-field insensitive detectors (SiPM)
- ToF PET → improve S/N
- γ detection requires:
 - γ conversion \rightarrow LYSO scintillator (fast, high light yield)
 - Light detection → SiPM as photon detector
- Waveform sampling:
 - Development of waveform analysis was started and shows promising

Simple PET module \rightarrow SiPM + LYSO:

- ullet Different scintilator crystals have been tested ightarrow production has an influence on energy resolution
- Timing resolution for 2 back-to-back γ 's in the sub-ns range (< 500 ps)
- Promising for ToF PET

< A > <