TARGET Waveform sampler for SiPM

- Using TARGET for single photon detection and precise timing:
 - Test fast preamplifier (μ PC2710TB) with different inductors (0.047 μ H, 1 μ H & 22 μ H)
 - Compare different Hamamatsu SiPM's:
 - _ 3x3 mm; *100 μm* pitch; model S10931-100P(X); Serial **# 19**; V₀₀ = 69.82 V
 - _ 1x1 mm; 25 μm pitch; model S10362-11-025C; Serial # 34; V_∞ = 71.67 V
 - $_{-}$ 1x1 mm; *100 µm* pitch; model S10362-11-100U; Serial **# 147**; V_{op} = 70.52 V
 - Compare different operating Voltages
 - Compare different light intensities (Filters \rightarrow 6.25%; 12.5%; 50%)

Setup:

- Laser, filters, diffuser \rightarrow small # of photons hit SiPM
- Attenuator + Ortec fast amplifier for the 3x3 mm SiPM

Basic Waveform Analysis

- 1) Baseline compensation
- 2) Look for peaks, I use ROOT TSpectrum
- 3) Only select peaks in a certain time window
- 4) @ this moment I only allow 1 peak for further analysis
- 5) Use a simplified CFD for time determination:
 - a) Get peak height
 - b) 30% of peak height = threshold
 - c) Lin fit around crossing of threshold determines the time of detection
- 6) Histogram peak heights and time

TARGET Waveform Analysis of SiPM signals

Digital sampling of electronic signal:

- Switched Capacitor Array (SCA) stores total signal
- Charge on each capacitor is measured \rightarrow sampled waveform
- Rebuild waveform for testing (slow readout)
- Analyse waveform on FPGA (fast readout)

Very POWERFULL tool because:

- Incorporate waveform analysis algorithms on FPGA for deconvolution of piled-up signals (classic electronics)
- QDC and TDC all in 1 device!
- High density of channels, cheap (VLSI), fast (up to 20 GSa/s), FPGA → flexible, low power

v.s.

Fitfunction is based on a preamplifier & differentiator combination

$$V = \frac{Q_{in}}{C_f} \cdot \frac{1}{\tau_f - \tau_d} \cdot \left[\exp\left(-\frac{t}{\tau_d}\right) - \frac{\tau_d}{\tau_f} \exp\left(-\frac{t}{\tau_f}\right) \right]$$

SiPM Optical pictures

Hamamatsu 3x3 mm²:

- 100 micron pitch
- ~ 84 micron cell size

Hamamatsu 1x1 mm²: • 25 micron pitch

• ~ 13 micron cell size

Optical pictures

Hamamatsu 1x1 mm²:

- 100 micron pitch
- ~ 88 micron cell size

STM SiPM PROTOTYPES: Mod A

- Die Size: 4.37mmx4.37mm
- Array Size: 3.5mmx3.5mm
- # of cells: 70x70
- Pitch 50 micron
- Fill factor: 36% (~30% from pic)

• Some dirt on top, handling after production, cleaning \rightarrow removal

New STM SiPM PROTOTYPES: Mod C

- Die Size: 4.37mmx4.37mm
- Array Size: 3.5mmx3.5mm
- # of cells: 60x60
- Pitch 58 micron
- Fill factor: 45% (~37% from pic)
- Some dirt on top, handling after production, cleaning \rightarrow removal

New STM SiPM PROTOTYPES: Mod C

- Die Size: 4.37mmx4.37mm
- Array Size: 3.5mmx3.5mm
- # of cells: 60x60
- Pitch 58 micron
- Fill factor: 45% (~37% from pic)
- Some dirt on top, handling after production, cleaning \rightarrow removal

SiPM Characteristics measured

Single SiPM:

- \cdot Gain vs (V_{op}; T)
- · Linearity (laser & rad. sources)
- \cdot Timing resolution (V_{op}; T; threshold)

2 SIPM PET:

 \cdot Energy resolution vs ($V_{_{\rm OD}}$; T)

 \cdot Back to back Timing resolution vs ($V_{_{\rm OD}}$; T ; threshold)

SiPM: Single and PET Setups

- Gain & Intrinsic Timing:
 - Laser set to single Photon level (neutral density filters)
 - Single SiPM from STM (# 3)
- PET Setup:
 - 2 SiPMs with Saint-Gobain LYSO
 - OR trigger
- Freezer:
 - Temperature control
 - Range: $-15^{\circ}C \rightarrow 20^{\circ}C$

Energy resolution: #2 & #6

 \cdot Only minor improvement by lowering the temperature (related to improvement of gain by lowering temperature?)

- \cdot Energy resolution improves with increase of V
- \cdot STM #6 has a higher gain than #2

BtB timing resolution: #2 & #6

BtB Timing

BtB Timing Resolution vs threshold

equal gain, same threshold

· Setup:

- · Laser pulses (635nm)
- # of photons controlled with neutral density filters
 - (going from 1 photon to ~ 20000 photons / pulse)
- Uniform light distribution over surface

Fitfunction \rightarrow y = p0*(1-exp(x/p1))

Line \rightarrow y = 0.109*x - 0.118

Low light intensity

- Gain is ~ 1.67e5
 Gain = average of gain calculated from 1 p.e. and 2 p.e.
- · ADC has 25fC/count
- · Amplification factor is 450

Position Scans

Setup:

- · Pulsed laser (635 nm)
- · Single Photon light intensity
- \cdot Sigma laser focal point ~ 4-5 μm
- · 1 µm stepsize (XYZ stages)

Geometrical factor:

- · Color picture \rightarrow Black & White:
 - Value above 50% of max value \rightarrow count pixel as within active area (Black area)
 - · Value below 50% max value \rightarrow pixel is outside active area (White Area)
- \cdot Geometrical factor result from total scan area is ~32.9 %
- \cdot Geometrical factor result from red square area is ~33.0 %

new STMicroelectronics SiPM Model A

XY Position Scan Time Cut

new STMicroelectronics SiPM Model C

new STMicroelectronics SiPM

2D scans:

- Mod C 1micron step \rightarrow
- Mod A 2x2.5 Micron step at different locations \rightarrow behaviour is fairly uniform

Gain STMicroelectronics SiPM for T = 15C \rightarrow -20C

