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Epitaxial (Epi) silicon is considered to be an option for sensors in high energy physics 
experiments at the super Large Hadron Collider due to its high radiation hardness. In order to 
understand the properties of such sensors and the radiation induced damage, we investigated 
standard epitaxial (Epi-St) and oxygen enriched epitaxial (Epi-Do) material with 100 and 150 μm 
thickness by Deep Level Transient Spectroscopy (DLTS). The irradiations were carried out at the 
PS at CERN with 23 GeV protons with fluences of 6.4 10

11 
cm

-2
. We performed macroscopic 

measurements like capacitance-voltage (CV) and current-voltage characteristics (IV) to obtain the 
sensor properties (depletion voltage, leakage current, effective doping concentration) and DLTS 
measurements in order to obtain the defect properties (defect concentration, cross section, 
activation energy). Isothermal annealing was performed at 80

o 
C up to annealing times of 30 

minutes followed by isochronal annealing up to 300
o
C. It was found a correlation between two 

defect levels and the leakage current. 
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Motivation
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(Simulation by M. Huntinen for CMS)

LHC (2009), L=1034 cm-2s-1

Φ(r=4cm) ~
1.6x10-16cm-2

10 years

500fb-1

Φ(r=4cm) ~
3x10-15cm-2

sLHC (2020?),   L=1035 cm-2s-1

5 years

2500fb-1

(14 TeV pp collider, 
25 ns bunch spacing)



Radiation Damage effects in Si
Bulk (crystal) damage due to Non Ionizing  
Energy Loss (displacement damage: point 
defects, clusters)

Change of effective doping 
concentration Neff (full depletion 
voltage)
Increase of leakage current (increase 
of shot noise, thermal runaway)
Increase of  charge carrier trapping 
(reduced charge collection efficiency 
(CCE))

For the development of more radiation hard Si detectors: 

Knowledge of defect kinetics
Correlation of microscopic with macroscopic properties  of 
the detector for optimizing the Si growth and processing technology
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Overview of radiation induced defects
- Change of the effective doping concentration
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EV

effective 
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leakage current
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H152K 0/-

H140K 0/-
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- Generation of leakage current
- Increase of charge carrier trapping

At room temperature:

“I. Pintilie, Dresden 2008”



Capacitance Deep Level Transient Spectroscopy

5/11                     Cristina Pirvutoiu, Hamburg University DPG – Bonn 2010

Principle of operation: capacitance transients measurements in function 
of temperature 

Requirements: Trap concentration << Doping concentration →
Φmax<1012cm-2
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Analyzed samples
n-type Si d [µm] <O> [cm-3] Neff [cm-3]
Epi-DO 100 2.7x1017

1.4x1017

5.4x1016

9x1015

1.44x1013

Epi-DO 150 8.12x1012

Epi-ST 100 1.51x1013

Epi-ST 150 7.85x1012
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Point 
defects O 
dependent

Extended defects 
O independent



Annealing of clusters 

7/11                        Cristina Pirvutoiu, Hamburg University        DPG – Bonn 2010

Isochronal annealing => 30 minutes thermal treatment at       
different temperatures
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Annealing of clusters 
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Indication of similar annealing behavior of E5 and E205 
clusters and of leakage current => dedicated study for 

correlation 

Leakage current annealingCluster annealing
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Investigation of E4, E5 and E205 clusters
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Correlation between leakage current and 
concentration
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E5 has greater impact than E205 No dependence on O concentration



Conclusions

A direct correlation between each of the E5   
and E 205 defect concentration and the   
leakage current was evidenced

The generation of E4, E5 and E205 defect   
clusters does not depend on O concentration

E4 and E5 annealed out together (100 C)  
suggesting that they can be two charge  
states of the same defect cluster

E205 annealed out at higher temperature (220C)
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Capacitance Deep Level Transient Spectroscopy
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∆C0 = C(t1)-C(t2)

R
DT C
∆C2NN 0=

Extraction of parameters : several 
temperature scans with different
TW= t2-t1 → Arrhenius plot :

→ Et extracted from slope of the 
Arrhenius plot
→ σn from the intercept with ordinate
→ Trap concentration:
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Cristina Pirvutoiu

Deep level transient spectroscopy for determination of  
charge carrier traps parameters in irradiated sensors 



Outline

Motivation
Operation principles of silicon detectors
Shockley-Read-Hall statistics
Deep level transient spectroscopy
Analyzed samples
Annealing studies of clusters
Correlation between leakage current and          
defect concentration
Conclusions 



Motivation
To develop Silicon detectors able to operate in the      
conditions imposed by S-LHC
Damage mechanism: due to Non Ionizing Energy Loss 
dislocation of Si atoms (interstitials), empty lattice sites 
(vacancies), interaction with impurities (O, C) form 
defects that introduce energy levels in the band gap   
Radiation damage effects on sensors: 

change in effective doping concentration – change in 
the full depletion voltage
increase of leakage current
deterioration of charge collection efficiency: part of 
the drifting charge, created by ionizing particle, is 
temporarly trapped by the defects generated by
irradiation



Operation principles of silicon detectors

VNeff

nnDppA xNxN ,, =

Capacitance

Si detector: a diode operated under reverse bias where the depleted 
region acts like ionization chamber 

Desired detector operation voltage V > full depletion voltage VFD
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Shockley-Read-Hall statistics
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Rate equations
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Shockley-Read-Hall statistics
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Capacitance Deep Level Transient Spectroscopy

Principle of operation: capacitance transients measurements as function 
of temperature 
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Capacitance Deep Level Transient Spectroscopy

2. Hole trap      located in the lower part of the band gap:
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Filling of the traps
By forward bias: electrons and holes injected          trap must have cp>>cn
for fully filling the hole traps
By short -λ laser (red) from the n-side             trap with any cp can be 
filled with holes      



DLTS: determination of trap parameters
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DLTS: determination of trap parameters
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DLTS: determination of trap parameters

( ) maxmax,,, /1    versus)(ln TTNv eVCpnth τ

3. Extraction of parameters3. Extraction of parameters
Several temperature scans with different Several temperature scans with different 
TW = t2-t1 →→ Arrhenius plotArrhenius plot::
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Nt extracted form DLTS 
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Arrhenius plot with 
ordinate

The correlation functions used for the maximum evaluation



DLTS: determination of trap parameters
Example Arrhenius plot:
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Linear Regression E4
Y = 32.55 + 4.273 * X
R=0.998
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EC-ET=0.367eV
Linear Regression E5
Y = 33.117 + 5.177 * X
R=0.998
σ=4.144E-15 cm2

EC-ET=0.445eV



Summary

DLTS DLTS →→ technique for determination of charge carrier technique for determination of charge carrier 
traps parameters, based on observing reversely biased traps parameters, based on observing reversely biased 
detector response to applied light or an abrupt change of detector response to applied light or an abrupt change of 
biased voltage (filling of traps with holes and/or biased voltage (filling of traps with holes and/or 
electrons)electrons)

DLTS method:DLTS method:
Capacitance transient after the filling process is Capacitance transient after the filling process is 
measuredmeasured
Capacitance transient caused by the change of the Capacitance transient caused by the change of the 
width of SCR due to emission of carriers that were width of SCR due to emission of carriers that were 
trapped during the fillingtrapped during the filling
During the measurement device must be biased with During the measurement device must be biased with 
the voltage lower than full depletion voltagethe voltage lower than full depletion voltage
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